Warning: Undefined array key "id" in /home1/tcsuh570/public_html/events_select2.php on line 4

Warning: Undefined array key "year" in /home1/tcsuh570/public_html/events_select2.php on line 5
Welcome to the Texas Center for Superconductivity at University of Houston

News & Events At The Texas Center For Superconductivity

TcSUH
Warning: Undefined variable $events_postname in /home1/tcsuh570/public_html/events_select2.php on line 105


Special Seminar

The Mixed State of BSCCO Visualized in Real Space with Single Vortex Resolution: Solid-Liquid Phase Transition and Magnetization Reversal

by: Alexander Schwarz

Date: Friday May 27, 2005

Time: 1:00 pm – 2:00 pm

Location: Houston Science Center – Building 593 — Room 102

Overview

It will be shown that vortex states in BSCCO can be visualized in real space with single vortex resolution using magnetic force microscopy. This technique is than applied to investigate two phenomena: vortex lattice melting and magnetization reversal. The former can be triggered by increasing either temperature or magnetic field. It turns out that the way how the solid-liquid phase transition occurs, appears to be quite different. In the latter case, a flux-antiflux boundary propagates through the sample. Particularly, it is possible to observe the annihilation of individual vortex-antivortex pairs.

Download: Event PDF


Back to TcSUH News & Events

Special Seminar

The New Generation of Superconductor Electric Power Equipment

by: Alexis Malozemoff

Date: Monday May 23, 2005

Time: 4:30 pm – 5:30 pm

Location: Houston Science Center – Building 593 — Room 102

Overview

Rising energy demands, driven by population and economic growth, face an increasing clash with resource, land use and other environmental limits. Amidst the fierce debate over general energy policy priorities, there is broad consensus on the urgent need to modernize and strengthen the electric power grid. High Temperature Superconductor (HTS) wire is one of the keys to achieving these goals. Superconductivity is the amazing property of certain materials to conduct electricity with no resistive loss and high current density, enabling a new generation of electrical power equipment that is efficient, compact and very low in environmental impact. This vision has been enabled by the successful development and commercialization of robust, long-length, high performance HTS wires.

Examples of HTS applications, all in an advanced prototype stage, include:

  • High-capacity, controllable HTS cables, which offer increased delivery capacity, essentially zero local environmental impact and the ability to offload overburdened sections of the grid;
  • Dynamic HTS synchronous condensers offer large amounts of rapidly adjusted reactive power to improve grid stability and efficiency;
  • Utility generators that produce more electricity for every unit of fuel consumed; and
  • Fault current limiters and transformers that enable more reliable, lower cost operation of the grid.

This presentation will describe these applications, along with the superconductor wire that underlies them, and will assess their potential impact on the major grid challenges our society faces today.

Download: Event PDF


Back to TcSUH News & Events

Special Seminar

Second-generation HTS Conductors

by: Dr. Venkat Selvamanickam

Date: Monday May 02, 2005

Time: 3:00 pm – 4:00 pm

Location: Houston Science Center – Building 593 — Room 102

Overview

High temperature superconductors (HTS) are nearing their commercial viability with the projected roll out of second-generation conductors within one year. Second-generation HTS conductors promise to meet the price-performance characteristics needed for widespread use of HTS. SuperPower has been working on the scale up of second-generation HTS since its formation in 2000. This presentation would discuss the R&D over the last 5 years at SuperPower that has resulted in successful scale up of high-throughput processes to produce 100 m lengths of second-generation HTS conductors. The R&D has been an integration of basic materials science, equipment engineering, and process development. Such an integration was applied to all eight processing steps involved in fabrication of second-generation HTS conductors that include substrate polishing, buffer deposition, superconductor deposition, slitting, and copper stabilizer application. In addition, novel characterization techniques were applied to develop off-line and on-line quality control tools. The presentation would provide the latest development in the scale up R&D of second-generation HTS conductors as well as detail the remaining challenges for successful use of HTS in commercial applications

Download: Event PDF


Back to TcSUH News & Events

Special Seminar

Studies of Growth for BST Ferroelectric Oxide Thin Films

by: Prof. Yanrong Li

Date: Friday April 15, 2005

Time: 4:00 pm – 5:00 pm

Location: Houston Science Center – Building 593 — Room 102

Overview

We have systematically investigated the epitaxial behavior, microstructures, and dielectric properties of ferroelectric (Ba,Sr)TiO3 thin films on various substrates grown by pulsed laser ablation and laser MBE. We have focused on the film growth mechanisms, low temperature crystallization, and buffer- layer-induced high oriented film growth as well as oxide superlattices. Microstructural studies from x-ray diffraction, rocking curve measurements, and electron microscopy reveal that the films have excellent epitaxial behavior with good single crystallinity and sharp interfacial structures and smooth surface morphology for the films grown on substrate surfaces.

Download: Event PDF


Back to TcSUH News & Events

Special Seminar

Manufacturability at the Nanoscale

by: Dr. Christie Marrian

Date: Thursday April 07, 2005

Time: 12:00 pm – 1:00 pm

Location: Houston Science Center – Building 593 — Room 102

Overview

Using the 2005 IBM Global Technology Outlook, I will describe the roadmap for device technology and manufacturing in the semiconductor industry. Looking beyond these roadmaps, I will discuss moving beyond our current methods of fabrication of nanoscale devices and circuits. These almost always rely on heroic efforts of nanofabrication that are inappropriate for anything other than research. To achieve, at the nanoscale, any level of volume manufacturing requires more than extensions of the paradigms practiced today. We must look to Nanotechnology for help in overcoming this challenge as to fail to do so will consign nanostructure science and technology to be a mere intellectual curiosity.

Download: Event PDF


Back to TcSUH News & Events